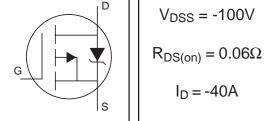
PD-91405C

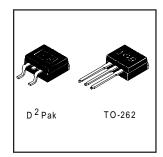
IRF5210S/L

International **ISPR** Rectifier

- Advanced Process Technology
- Surface Mount (IRF5210S)
- Low-profile through-hole (IRF5210L)
- 175°C Operating Temperature
- Fast Switching
- P-Channel
- Fully Avalanche Rated

Description


Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.


The D²Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The D²Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application.

The through-hole version (IRF5210L) is available for low-profile applications.

Absolute Maximum Ratings

HEXFET[®] Power MOSFET

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ -10V ^⑤	-40	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ -10V ^⑤	-29	A
I _{DM}	Pulsed Drain Current 0 5	-140	
$P_{D}@T_{A} = 25^{\circ}C$	Power Dissipation	3.8	W
$P_{D}@T_{C} = 25^{\circ}C$	Power Dissipation	200	W
	Linear Derating Factor	1.3	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy@S	780	mJ
I _{AR}	Avalanche Current ^①	-21	A
E _{AR}	Repetitive Avalanche Energy ^①	20	mJ
dv/dt	Peak Diode Recovery dv/dt 35	-5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{0JC}	Junction-to-Case		0.75	00004
R _{0JA}	Junction-to-Ambient (PCB Mounted, steady-state)**		40	°C/W

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

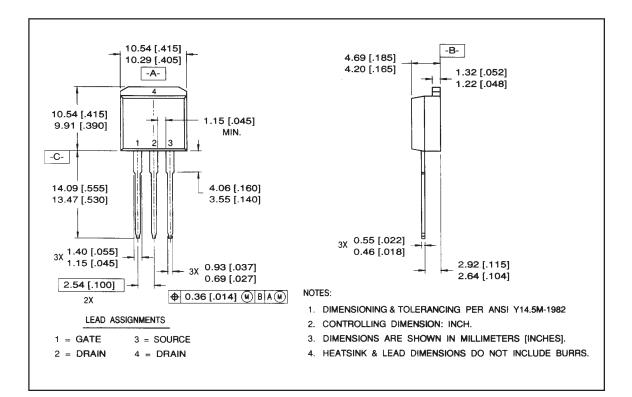
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-100			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.11		V/°C	Reference to 25°C, $I_D = -1mA$
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.06	Ω	$V_{GS} = -10V, I_D = -24A$ (4)
V _{GS(th)}	Gate Threshold Voltage	-2.0		-4.0	V	$V_{DS} = V_{GS}, I_D = -250 \mu A$
9 _{fs}	Forward Transconductance	10			S	$V_{DS} = -50V, I_{D} = -21A$
IDSS	Drain-to-Source Leakage Current			-25	μA	$V_{DS} = -100V, V_{GS} = 0V$
DSS	Drain to bource Leakage burrent			-250		$V_{DS} = -80V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
1	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
IGSS	Gate-to-Source Reverse Leakage			-100		$V_{GS} = -20V$
Qg	Total Gate Charge			180		I _D = -21A
Q _{gs}	Gate-to-Source Charge			25	nC	$V_{DS} = -80V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			97		V_{GS} = -10V, See Fig. 6 and 13 \circledast §
t _{d(on)}	Turn-On Delay Time		17			$V_{DD} = -50V$
tr	RiseTime		86			I _D = -21A
t _{d(off)}	Turn-Off Delay Time		79		ns	$R_G = 2.5\Omega$
t _f	FallTime		81			$R_D = 2.4\Omega$, See Fig. 10 ④
L _S	Internal Source Inductance 7.5	nH	Between lead,			
LS				and center of die contact		
Ciss	Input Capacitance		2700			$V_{GS} = 0V$
Coss	Output Capacitance		790		pF	V _{DS} = -25V
C _{rss}	Reverse Transfer Capacitance		450		1	<i>f</i> = 1.0MHz, See Fig. 5⑤

Source-Drain Ratings and Characteristics

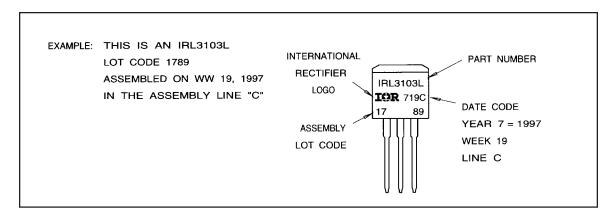
	Parameter	Min.	Тур.	Max.	Units	Conditions
ls	Continuous Source Current		10		MOSFET symbol	
	(Body Diode)			-40	A	showing the
I _{SM}	Pulsed Source Current					integral reverse
	(Body Diode) ①		140		p-n junction diode.	
V _{SD}	Diode Forward Voltage			-1.6	V	$T_J = 25^{\circ}C, I_S = -24A, V_{GS} = 0V$ (4)
t _{rr}	Reverse Recovery Time		170	260	ns	$T_J = 25^{\circ}C, I_F = -21A$
Q _{rr}	Reverse Recovery Charge		1.2	1.8	μC	di/dt = -100A/µs ⊕⑤
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L_S+L_D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ④ Pulse width \leq 300µs; duty cycle \leq 2%.
- ② Starting $T_J = 25^{\circ}C$, L = 3.1mH


S Uses IRF5210 data and test conditions

- $R_G = 25\Omega$, $I_{AS} = -21A$. (See Figure 12)
- $\label{eq:ISD} \textcircled{3} I_{SD} \leq \textbf{-21A}, \ di/dt \leq \textbf{-480A/\mus}, \ V_{DD} \leq V_{(BR)DSS},$ $T_J \le 175^{\circ}C$


** When mounted on 1" square PCB (FR-4 or G-10 Material).

For recommended footprint and soldering techniques refer to application note #AN-994.

Package Outline

Part Marking Information TO-262

